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ABSTRACT
Idling, or running the engine when the vehicle is not mov-
ing, accounts for 13% - 23% of vehicle driving time and costs
billions of gallons of fuel each year. In this paper, we consid-
er the problem of idling reduction under the uncertainty of
vehicle stop time. We abstract it as a classic ski rental prob-
lem, and propose a constrained version with two statistics
µB- and qB+ , the expectation of short stops’ lengths and the
probability of long stops. We develop an online algorithm
that combines the best of the well-known deterministic and
randomized schemes to minimize the worst case competitive
ratio. We demonstrate the robustness of the algorithm in
terms of both worst case guarantee and average case perfor-
mance using simulation and real-world driving data.

1. INTRODUCTION
Fuel economy has become a major concern in vehicle de-

signs, due to its significant environmental impact and the
foreseeable shortage of fossil oil. There is an enormous
amount of efforts in place to reduce the vehicle fuel con-
sumption and emission (see e.g. [8]). This greatly motivates
the development and commercialization of electric vehicles,
hybrid electric vehicles, and other energy efficient vehicles.

In this paper, we consider the problem of reducing the
cost associated with vehicle idling. An idling vehicle
runs its engine when it is not moving, which causes unnec-
essary waste of fuel. The average amount of idling has been
measured at 13% to 23% of the total vehicle operating time,
according to surveys conducted in North America and Eu-
rope [4]. In US alone, idling vehicles uses more than 6 billion
gallons of fuel at a cost of more than $20 billion each year [1].
These (possibly astonishing) facts have triggered significant
legislation efforts against unnecessary long idling. For ex-
ample, Toronto City Council at its meeting on July 8, 2010,
made changes to the Idling Control By-Law, to impose an
idling limit of 1 minute [7]. Similar rules and laws can be
found throughout US [3] and Europe [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

In order to reduce the costs associated with idling time
(including fuel and emissions), the driver may manually turn
off the engine, when he/she expects to experience a long
stop. Alternatively, Stop-Start Systems (SSS) have been
proposed to automatically perform the task. Such a system
is a key building block in hybrid electric vehicles (HEV), but
it can also be added as a new feature to conventional vehicles
(those equipped with an internal combustion engine only).
In the later case, they are typically referred to as Stop-Start
Vehicles (SSV) or micro-hybrid vehicles. SSV would turn off
the engine immediately when the car stops, and restart the
engine when the driver pushes the gas pedal to go forward.
Other functions like accessories and lighting are powered by
an electrical source other than the vehicle’s alternator. In
HEV, the strategy can be more complicated, and is out of
the scope of this work.

As in the case of idling, restarting the engine also comes
with a cost. It is estimated that the fuel consumption for
restarting the engine once is equivalent to keeping the engine
idling for 10 seconds [4, 2]. Considering other cost associated
to engine wear and exhaust gas emission, this number goes
up to 28 seconds for SSV or 47 seconds for those without
SSS (see Appendix C for details). Thus, it is not necessarily
the best strategy to turn off the engine immediately. Con-
sidering the cost of fuel consumption alone, it is better to
keep the engine running if the vehicle is known to be at rest
for less than 10 seconds.

However, the vehicle stop time is unknown or even hard
to estimate in many situations, such as at traffic lights or in
heavy traffic. Thus, SSV have to make online decisions, i.e.,
without the a-prior knowledge of the vehicle stop time. In
this paper, we consider the problem of finding the best online
strategy for the start-stop systems. It can also be provid-
ed as a driving tip to drivers of vehicles without stop-start
systems. In particular, we claim the following contributions:
– We consider the costs of fuel consumption, emission, and
engine wear associated with idling and restart. We abstract
the problem as a classic ski rental problem, where a break-
even value characterizes the trade-off between keeping the
vehicle idle and restarting the engine. Thus, existing solu-
tions can be incorporated.
– We observe the characteristic of the optimal offline algo-
rithm, and propose a constrained ski rental problem by in-
troducing two new statistics µB- and qB+ , where µB- is the
expected length of short stops, and qB+ is the probability
of long stops. We derive an online algorithm for the con-
strained ski rental problem, which gives the smallest worst



case expected competitive ratio under any traffic conditions.
– We use real-world data and simulation to test the perfor-
mance of the online algorithm. For vehicles with or with-
out SSS, the proposed strategy exhibits robust behavior in
different traffic conditions. For 1182 vehicles with real driv-
ing data, it performs the best in 1169 vehicles if they are
SSV, and in 977 vehicles without SSS. At the same time, it
achieves the smallest bound on worst case performance.

The rest of the paper is organized as follows. In Section 2,
we introduce the problem of SSS online strategy and link
that to the classic ski rental problem. We also review related
works proposed in the context of the ski rental problem. In
Section 3 we consider the constrained ski rental problem. In
Section 4 we propose an online algorithm to minimize the
worst case CR. In Section 5, we use real-world driving data
and simulation to validate the performance of the proposed
strategy. Finally, the paper is concluded in Section 6.

2. IDLING REDUCTION PROBLEM
When the car has to stop due to the traffic or the driver’s

needs, there are two possible actions that the driver/SSS can
take, each associated with different costs as below:
– Keeping the Vehicle Idle, which would waste fuel to
keep the engine running at a relatively low speed, and con-
sequently with exhaust gas emissions. The associated cost
is proportional to the vehicle idling time.
– Turning off the Engine. In this case, the engine has to
restart when the driver pushes the gas pedal. Restarting the
engine requires a one-time cost due to 1) fuel consumption
and related emission; 2) excessive engine wear, including
those to the starter and battery.

Both costs can be calculated by studying the character-
istics of the vehicle and the cost to each parts (e.g., starter
and battery). In the end, we can use two constant numbers,
costidling/s denoting the cost of idling per unit time, and
costrestart for the one-time cost to restart the engine. The
ratio between these two

B =
costrestart
costidling/s

(1)

denotes the amount of idling time such that the total cost
for idling is equal to the cost of stoping and restarting the
engine. B is called the break-even interval, which plays
a key role in the algorithm design.

During the vehicle stop, decision has to be made whether
to continue waiting (and keeping the engine idle) or turn
off and restart when the driver intends to move forward.
If the vehicle stop time y is known in advance, it is easy
to figure out the optimal strategy as follows: if y is less
than B (informally, the stop is “short”), then it is better
to keep the engine idle; otherwise (informally, in case the
stop is “long”), the driver/SSS should turn off the engine
immediately and restart later.

However, the vehicle stop time is naturally random, and
in many situations, such as stops at light or in heavy traffic,
it is unknown. The decision has to be made without having
the input y, or in an online fashion. In contrast, the opti-
mal strategy with the knowledge of y is called the offline
algorithm. The problem of designing online algorithm to
choose between continuing idling (and paying a repeating
cost) or paying a one-time restart cost is exactly the topic
of the classic ski rental problem [11]. In the ski rental
problem [11], suppose a skier has to pay $1 for renting skis
for one day or pay $B to buy his own. He/she cannot predic-

t until which day he/she is still able to ski due to weather
condition. Every day when he/she goes skiing, an online
decision can be made on whether to rent or buy.

2.1 Competitive Analysis
Competitive analysis is a common way to evaluate online

algorithms, which compares the cost incurred by the evalu-
ated strategy with the optimal offline algorithm. For a stop
with length y, we denote the offline cost by costoffline(y),
which can be calculated as

costoffline (y) =

{
y 0 ≤ y < B
B y ≥ B (2)

The online algorithm (deterministically or randomly) s-
elects the amount of idling time x. We denote the cost
of the online algorithm for a selected x and a given y as
costonline(x, y). Since the vehicle will wait until x, if y < x,
the cost is y; otherwise, the cost is the amount of idle time
plus the one time restart cost.

costonline (x, y) =

{
y 0 ≤ y < x

x+B y ≥ x (3)

The competitive ratio cr(x, y) for a given pair of x and
y is defined as the ratio between the costs of the online and
offline algorithms:

cr(x, y) =
costonline(x, y)

costoffline(y)
(4)

The expected competitive ratio, denoted as CR, is de-
fined as the ratio between the expected cost of an online
algorithm and that of the offline algorithm [12]:

CR =
E
y
[E
x
[costonline(x, y)]]

E
y
[costoffline(y)]

(5)

Our objective is to select the strategy of idling time x such
that the worst case CR (maxy CR) is minimized.

2.2 Existing Solutions
For SSV, one strategy commonly used in the design1 is

that the engine would be turned off immediately when the
car stops. This strategy (with the short name TOI) has a
fixed cost of B for any stop length y. For vehicles without
SSS, the drivers may be reluctantly to turn off the engine
because of the concerns on the engine wear or other needs.
This behavior (with the short name NEV) would certainly
incur large cost when the stop time is long. In the following,
we review existing online algorithms proposed in the context
of the ski rental problem.

A deterministic online algorithm chooses a fixed x in (3).
[11] proves that among all possible deterministic algorithms,
the strategy of x = B gives the smallest worst case cr(x, y):

min
x

max
y

cr(x, y) = max
y

cr(B, y) = 2 (6)

We use DET to denote this online algorithm.
If we consider the metric of the worst case CR, DET is

not the best strategy. [12] proposes a randomized online al-
gorithm, which can guarantee that the worst case CR is no
larger than e/(e − 1) for any distribution of y. This bound
is also proven to be the smallest that any online algorith-
m can provide with no further statistical information on y.
This algorithm, denoted as N-Rand, select the idling time
x based on the probability density function P (x) as follows

P (x) =

{
1

B(e−1)
e

x
B 0 ≤ x ≤ B

0 otherwise
(7)

1see e.g., http://en.wikipedia.org/wiki/Start-stop system



[13] proposes to include the first-moment (the average) µ
or second-moment of the stop length as additional statis-
tical information. It then derives a revised randomization
algorithm to minimize the largest CR′, where

CR′ = E
y

Ex [costonline(x, y)]

costoffline(y)

 (8)

With the available information on µ, if µ ≤ 2 e−2
e−1

B = 0.836B,

the probability density function of x is derived as in (9); oth-
erwise, it is the same as N-Rand.

P (x) =

{
1

B(e−2)

(
e

x
B − 1

)
0 ≤ x ≤ B

0 otherwise
(9)

The upper bound on CR′ is proven to be 1 + µ
2B(e−2)

. We

denote this strategy as MOM-Rand.
Other works include [10] [14]. [10] proposes to analyze the

average-case CR, but the analysis is based on the assumption
that the distribution q(y) of stop length y is exponential
or uniform. [14] defines a variance of the classic ski rental
problem, by introducing the option of leasing (partly rent,
partly buy) in addition to pure rent or pure buy.

In the following, we look at additional statistical infor-
mation of the stop length that would help provide better
performance guarantees than the existing solutions. We use
the definition of CR in (5), because of its direct relationship
with the expected cost of the online algorithm.

3. CONSTRAINED SKI RENTAL PROBLEM
First-moment (the average) is widely used as characteris-

tics of random variables. However, it may not be informative
for the ski rental problems. Once the stop length y is longer
than B, to what extent its length exceeds B would not affec-
t the optimal offline decision: the engine should be turned
off immediately. Similarly, the behavior of the determinis-
tic online algorithm (DET) does not depend on the actual
length y either if y > B: it would only wait until time B
to turn off the engine. In addition, we prove that the addi-
tional information µ does not change the randomized online
algorithm: with any given µ, the randomized algorithm is
still the same as defined in (7), and the optimal CR remains
to be e

e−1
. The proof is informally described in Appendix B.

We observe that the average length for stops shorter than
B is still meaningful. For the stops with length higher than
B, we will use its total probability. Hence, we propose to
use the knowledge of µB- and qB+ to improve the online
algorithm design, which are defined as follows 2

µB- =

∫ B

0+
yq(y)dy (10)

qB+ = 1−
∫ B

0+
q(y)dy (11)

Now all the possible distributions of stop length y can be
described by the set Q
Q = {q(y)|q(y) ≥ 0, (10) and (11) are satisfied.} (12)

With these two constraints, the expected costs of the offline
algorithm and DET are

E
y
[costoffline(y)] = µB- + qB+B (13)

E
y
[costDET (y)] = µB- + 2qB+B (14)

which are both constants for a given pair of µB- and qB+ .

2Mathematically speaking, the expectation of short stops
should be

µB-

1−qB+
. We use our definition for convenience.

Also, an upper bound on the expected offline cost can be
derived as B (since µB- ≤ B). This is consistent with the
intuition that no online algorithm can outperform the offline
algorithm, including TOI, whose expected cost is always B.

Our problem is to find an online algorithm that defines
the probability distribution P (x) of the idling time x with
the given information of µB- and qB+ , such that it provides
the smallest upper bound on the CR (and consequently the
expected online cost). If the expected online cost with s-
trategy P (x) and stop length distribution q(y) is denoted
as

J(P, q) = E
y
[E
x
[costonline(x, y)]] (15)

the problem can be formulated as a minimax problem
min
P∈P

max
q∈Q

J(P, q) (16)

where P defines the set of all possible P (x)

P =
{
P (x)|P (x) ≥ 0,

∫ +∞
0+

P (x)dx = 1
}

(17)

4. PROPOSED SOLUTION
We first consider the solution format. Similar to the case

of randomized algorithm (N-Rand) [12], it can be prove that
∀x > B, P (x) = 0 (see Appendix A). In other words, the
optimal online strategy only selects idling time x no larger
than B.

Next, we observe that N-Rand has a continuous pdf for
x ∈ [0, B]. The deterministic online algorithm (DET) ex-
hibits the same optimal behavior as the offline algorithm
when the stop length y is less than B. On the other hand,
the solution of turning off immediately (TOI) follows the
online strategy when y > B. Both DET and TOI can be
regarded as a discrete probability distribution, represented
with dirac function. Thus, we propose a generic solution for-
mat for the designer’s strategy P (x), to include the discrete
and continuous distributions simultaneously:
P (x) = p(x) + αδ(x− ε) + βδ(x−B) + γδ(x− b) (18)

where p(x) is a continuous pdf function, δ(x) is the Dirac
delta function, and ε is an arbitrarily small positive number
(to represent the algorithm TOI). In Equation (18), there
are three components of discrete distributions at ε, B, and b,
with a probability mass function of α, β, and γ respectively.
The one at b (0 < b < B) is used to represent b-DET. The
only difference between b-DET and DET is that b-DET
would idle until b instead of B. We now use the following
steps to solve the constrained ski rental problem as in (16).

First, we assume α, β, and γ are constants, and solve (16):
– The problem (16) (constrained by (10) and (11)) is trans-
formed to an unconstrained one using the standard Aug-
mented Lagrangian method, as in Section 4.1.
– A set of relationship between q(y) and P (x) is introduced
to offset the variation in q(y). The problem now is converted
to a linear programming (LP) problem with an objective
independent of q(y), as in Section 4.2.
– In Section 4.3, we obtain and solve an ordinary differ-
ential equation for the continuous pdf p(x), and find the
Lagrangian coefficients as functions of α, β, and γ.

With the derived Lagrangian coefficients, we can trans-
form the problem (16) into an LP with variables α, β, and
γ. Their values can be solved with standard techniques in
linear programming, as in Section 4.4.

4.1 The Augmented Lagrangian



We denote the expected online cost for a given y ≤ B as

C(P (x), y) =

∫ y

0+
(x+B)P (x)dx+

∫ B

y

yP (x)dx (19)

and the one for y > B as

C′(P (x), y) =

∫ B

0+
(x+B)P (x)dx (20)

The expected online cost J(P, q) can be represented as

J(P, q) =
∫ +∞
0+ E

x
[costonline(x, y)]q(y)dy

=
∫ B
0+
C(P (x), y)q(y)dy +

∫ +∞
B

C′(P (x), y)q(y)dy
(21)

In order to incorporate the constraints (10) and (11), we
use Lagrange Multipliers λ1 and λ2 to associate the con-
straints with the objective function.

L(P, q, λ1, λ2) = J(P, q) + λ1

(
−
∫ B
0+
q(y)dy + 1− qB+

)
+λ2

(
−
∫ B
0+
yq(y)dy + µB-

)
(22)

Due to the linearity of J(P, q) on q, strong duality holds.
Now the original minimax problem (16) can be reformulated
as an unconstrained one, with its objective defined below

min
P∈P,q∈Q

L(P, q, λ1, λ2) (23)

4.2 Constraints on P(x) and q(y)

The Lagrangian in (22) can be partitioned into two parts
L(P, q, λ1, λ2) = Obj + Con (24)

where
Obj(q, λ1, λ2) = qB+

∫ B
0+

(x+B) p(x)dx+ αqB+B + 2βqB+B
+γ (µ1 + (q2 + qB+) (b+B)) + λ1 (1− qB+) + λ2µB-

(25)
Con = C(P (x), y)− λ1 − λ2y (26)

It should be noted that µ1 and q2, defined in (27), are vari-
ables.

µ1 =
∫ b
0+
yq(y)dy q2 =

∫ B
b
q(y)dy (27)

We use the same technique as in [13] to convert (24) in-
to a linear programming problem. The observation is that
for arbitrary distribution q(y) of stop length, there is a cor-
responding decision distribution P (x) which can offset the
variation from q(y). This is possible as P (x) can be any valid
probability distribution function. The resulted problem is

min
q

Obj (28a)

s.t. Con = C(P̃ (x), y)− λ1 − λ2y = 0 (28b)∫ B

0+
p(x)dx = 1− α− β − γ (28c)

p(x) ≥ 0 (28d)

where P̃ (x) = P (x)−γδ(x−b) is introduced for convenience.

4.3 Solving p(x)

The LP problem (28) can be solved with similar steps as
in [13]. First, to find p(x), (28b) is differentiated twice to
derive the following ordinary differential equation (ODE):

d

dx
p(x) =

1

B
p(x) (29)

The solution for this ODE is
p(x) = C0e

x
B (30)

where the coefficient C0 = 1−α−β−γ
B(e−1)

by considering the con-

straint (28c). Substituting (30) into (26), we can get the

Lagrange multipliers (as functions of α, β).{
λ1 = αB
λ2 = BC0e+ β = (1− α− β − γ) e

e−1
+ β

(31)

4.4 Solving α, β, and γ

Substituting (31) into (25), the objective Obj is now a
function of α, β, and γ, as in (32).

min
α,β,γ

Kαα+Kββ +Kγγ + e
e−1

(µB- + qB+B) (32)

where Kα, Kβ , and Kγ are constants, defined as
Kα = − e

e−1
(µB- + qB+B) +B

Kβ = − e
e−1

(µB- + qB+B) + (µB- + 2qB+B)
Kγ = − e

e−1
(µB- + qB+B) + [µ1 + (q2 + qB+) (b+B)]

We incorporate the constraints that P (x) should be a valid
probability function

α+ β + γ ≤ 1, α ≥ 0, β ≥ 0, γ ≥ 0 (33)
The LP problem with the objective in (32) and constraints

in (33) can be solved using standard techniques in linear pro-
gramming. Simply speaking, the constraints in (33) limit
that α, β, and γ are all finite. By the fundamental theo-
rem in linear programming, the solution space of this LP
problem forms a convex polytope, and the optimal solution
is obtained in one of the four vertexes. The strategy and
associated cost to each vertex are summarized below:

– (α, β, γ) = (0, 0, 0): the strategy is N-Rand, with cost

E
y
[costN−Rand(y)] = e

e−1
(µB- + qB+B) [12], worst case CR

CRN−Rand = e
e−1

;

– (α, β, γ) = (1, 0, 0): the strategy is TOI, with cost

E
y
[costTOI(y)] = B, worst case CR CRTOI = B

µB-+qB+B
;

– (α, β, γ) = (0, 1, 0): the strategy is DET, with cost

E
y
[costDET (y)] = µB- + 2qB+B, worst case CR CRDET =

µB-+2qB+B

µB-+qB+B
;

– (α, β, γ) = (0, 0, 1): the strategy is b-DET, with cost
and worst case CR defined in (35) and (38) respectively, if
the condition (36) is satisfied; otherwise its cost is (b+B).

We now detail how the expected cost of b-DET is calcu-
lated. Please note that b ∈ [0, B] is a design variable that
can be selected to minimize the cost of b-DET.

Given a pair of µB- and qB+ values, we first prove that b
should select some value larger than

µB-

1−qB+
. To prove it, the

stop length y can be selected to be
µB-

1−qB+
with probability

of 1 − qB+ , and an arbitrary value b′ > B with probability
of qB+ . Under such a distribution of y, the expected cost of
b-DET is b+B, always larger than the one (= B) of TOI.
Thus b-DET will never be selected.

With the assumption that b >
µB-

1−qB+
, y cannot be always

≥ b. Intuitively, any stop with length y ≥ b will introduce a
cost of b+B, larger than the case y < b. The worst case q(y)
can be proven to follow the rule that all short stops have a
length of either 0 or b, consequently µ1 = 0 and q2 =

µB-

b
.

The expected cost for b-DET is
E
y
[costb−DET (y)] = min

b
{E
y
[costonline(b, y)]}

= min
b
{(b+B)(

µB-

b
+ qB+)} (34)

When b =
√

µB-B

qB+
, (34) reaches its minimum value

E
y
[costb−DET (y)] = (

√
µB- +

√
qB+B)2 (35)
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Figure 1: The Proposed Online Algorithm and its Worst
Case CR
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(c) µB- = 0.02B
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(d) µB- = 0.05B

Figure 2: Projected view

This requires that b =
√

µB-B

qB+
>

µB-

1−qB+
, or equivalently

µB-

B
<

(1− qB+)2

qB+
(36)

We now summarize the optimal online algorithm. In par-
ticular, it will always selects the one with the smallest ex-
pected cost among the above four strategies. For example,
if the following set of inequalities are satisfied,

(
√
µB- +

√
qB+B)2 ≤ B

(
√
µB- +

√
qB+B)2 ≤ e

e−1
(µB- + qB+B)

(
√
µB- +

√
qB+B)2 ≤ µB- + 2qB+B

µB-

B
<

(1−qB+ )
2

qB+

(37)

b-DET is guaranteed to have the smallest cost among all
the strategies by the first three inequalities, and the fourth
inequality makes sure that there is a b that can achieve the
minimum cost for b-DET. Hence, b-DET is the optimal
strategy, and the worst case CR is

CR = CRb−DET =
(
√
µB- +

√
qB+B)2

µB- + qB+B
(38)

The solution is visualized in Figure 1. Figure 1(a) il-
lustrates the selection of N-Rand, DET, TOI, and b-
DET depending on the different values of µB- and qB+ .
Figure 1(b) shows the derived worst case CR. For better
comparison with these strategies, we also give two project-
ed views in Figure 2. This figure demonstrates that our
online algorithm combines the best of the well-known deter-
ministic and randomized schemes (its worst case CR is the

minimal among N-Rand, DET, TOI, and b-DET). The
possible improvements brought by b-DET are demonstrat-
ed in Figure 2(c)-(d) (with µB- = 0.02B and µB- = 0.05B
respectively).

5. EXPERIMENTAL RESULTS
In this section, we conduct experiments to evaluate the

performance of the proposed online algorithm. We consider
both SSV and the vehicles without start-stop systems. We
estimate a minimum break-even interval B = 28 seconds for
SSV, and 47 seconds otherwise (the details can be found
in Appendix C). In summary, we consider both the fuel
consumption and mechanical wears. Hence, our algorithm
addresses not only the environmental impact of vehicle idling
reduction, but also car owners’ concerns on damages to car
starter/battery (possible reasons why they are reluctant to
shut down engines during idling).

We first use real-world driving data to demonstrate the
performance of our proposed control strategy and its ad-
vantage compared with current solutions. We select data
released by the National Renewable Energy Laboratory (N-
REL) [5] in United States. These data are collected from
three areas: California, Chicago, and Atlanta, with 217, 312,
and 653 vehicles, respectively. For each vehicle, the driving
data were recorded for one week. Figure 3 depicts the prob-
ability distribution of the stop length for all the vehicles
in these three areas. These distributions are different from
the exponential distribution (as assumed in [10]) according
to the Kolmogorov-Smirnov test, mostly due to their heavy
tails.

We use these real-world driving data to study the CR of
the proposed algorithm, and compare it with other solution-
s, including TOI (Turning Off Immediately), NEV (Never
turning off), DET (Deterministic Algorithm) [11], N-Rand
(Randomized Online Algorithm) [12], and MOM-Rand [13].
We compare both the worst case CR (the largest CR among
all vehicles) and the average CR (the mean over them).

For SSV (where the break-even interval B is estimated at
28 seconds), the results are shown in the top row of Fig-
ure 4 for each of the three areas. For vehicles without SSS
(where B is set to be 47 seconds), the bottom row in Fig-
ure 4 draws the comparison. From the figure, our algorithm
always provides the smallest worst case CR, which is con-
sistent with the guaranteed optimal performance. Further-
more, our algorithm also outperforms the other solutions in
average CR. Among all the 1182 vehicles, our proposed al-
gorithm achieves the best average CR in 1169 of them for
SSV (B = 28). The mean CR of our algorithm is 1.11, 1.32,
and 1.10 respectively for the three areas, lowest among all
strategies. If B = 47 (for vehicles without SSS), our strate-
gy achieves best performance in 977 vehicles. The mean CR
is 1.35, 1.42, and 1.35 respectively, the best in each area. In
summary, our algorithm not only provides the smallest up-
per bound on the CR, but also exhibits great performance
in terms of the average CR in different areas.

Finally, we use simulation to validate the performance of
the algorithm under different traffic conditions. Although
the three areas have different average stop length (possibly
due to different traffic conditions), their shapes of the stop
length distributions are quite similar, as in Figure 3. Thus,
we generate simulation driving data by following the dis-
tribution of Chicago, but scaling its mean value. We then
check the worst case CR for each mean stop length.
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Figure 3: Distribution of Stop Length
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Figure 4: Individual Vehicle Test

Figures 5 and 6 illustrate the results. It can be seen
that our strategy always achieves the lowest upper bound
on the CR under any traffic condition (average stop time).
On the contrary, DET algorithm only functions well for
good traffic conditions (with short average stop time), and
TOI only works well for bad conditions (with long aver-
age stop time). The two randomized algorithms N-Rand
and MOM-Rand, while being robust, is consistently out-
performed by our proposed algorithm. This validates our
proposal that µB- and qB+ can provide valuable information
to improve the online algorithm design.
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Figure 5: Worst case CR under different average stop length-
s (B = 28)

6. CONCLUSIONS
In this paper, we formulate the vehicle idling reduction

as the classical ski rental problem. Besides incorporating
existing solutions, we propose a constrained ski rental prob-
lem with additional statistical information. We develop an
online algorithm that combines the best of the deterministic
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Figure 6: Worst case CR under different average stop length-
s (B = 47)

and randomized schemes to minimize the worst case com-
petitive ratio. With real-world driving data and simulation,
we demonstrate that the proposed algorithm is robust and
advantageous for different types of vehicles under different
traffic conditions.

7. REFERENCES
[1] Argonne National Labratory. Reducing Vehicle Idling.

http://www.transportation.anl.gov/engines/idling.html, 2013.

[2] Argonne
National Labratory. Which Is Greener: Idle, or Stop and Restart?
http://www.afdc.energy.gov/uploads/publication/which is greener.pdf

[3] California Envrionmental Protection Agency. California Code of
Regulations Title 13, Div 3, Ch 10. http://www.arb.ca.gov/,
2008.

[4] GW Taylor Consulting. Review of the Incidence, Energy Use
and Costs of Passenger Vehicle Idling.
http://www.nrcan.gc.ca/, 2003.

[5] National Renewable Energy Laboarotory. http://www.nrel.gov/

[6] Natural Resources Canada. Emission impacts resulting from
vehicle idling. http://oee.nrcan.gc.ca/.

[7] Toronto City Council. Idling Control By-law.
http://www.toronto.ca/transportation/onstreet/idling.htm.

[8] US Environmental Protection Agency. LOW GREENHOUSE
GAS EMITTING/EISA 141 COMPLIANT LIGHT DUTY
VEHICLES MODEL YEAR 2014. http://www.epa.gov/, 2013.

[9] C. Dong, H. Zeng, and M. Chen. A Cost Efficient Online
Algorithm for Automotive Idling Reduction. Technical Report,
McGill University, Mar. 2014. [Online] Available at
http://www.cyphy.ece.mcgill.ca/TechnicalReports.html.

[10] H. Fujiwara and K. Iwama. Average-case competitive analyses
for ski-rental problems. Algorithmica, 42(1):95–107, May 2005.

[11] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator.
Competitive snoopy caching. Algorithmica, 3(1-4):79–119, Nov.
1988.

[12] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki.
Competitive Randomized Algorithms for Non-uniform Problems.
In Proc. First ACM-SIAM Symposium on Discrete
Algorithms, 1990.

[13] A. Khanafer, M. Kodialamy, and K. Puttaswamy. The
constrained ski-rental problem and its application to online
cloud cost optimization. In Proc. IEEE Conference on
Computer Communications, 2013.

[14] Z. Lotker, B. Patt-Shamir, and D. Rawitz. Rent, Lease, or Buy:
Randomized Algorithms for Multislope Ski Rental. In SIAM
Journal on Discrete Mathematics, 26(2):718–736, 2012.

[15] M. Barth et al. Development of Comprehensive Modal Emission
Model: final report NCHRP Project 25-11. Transportation
Research Board, National Research Council, 2000.



APPENDIX
A. STRATEGY SPACE RANGE

In this appendix, we prove that the strategy space of the
online algorithm should be limited to [0, B].

We consider the expected cost when x = c where c > B.
The expected cost with this strategy can be written as

E
y
[costonline(c, y)]

=
∫ c
0+
yq(y)dy +

∫ +∞
c

(c+B) q(y)dy

=
∫ B
0+
yq(y)dy +

∫ c
B
yq(y)dy

+
∫ +∞
B

(c+B) q(y)dy −
∫ c
B

(c+B) q(y)dy
= µB- + (c+B) qB+ +

∫ c
B
yq(y)dy −

∫ c
B

(c+B) q(y)dy
(39)

For any given µB- and qB+ , the selected strategy should
minimize the worst case expected CR (thus worst case ex-
pected cost as the online algorithm has a fixed cost) for any
distribution q(y) in Q. However, we can construct a distri-
bution that results in a larger cost than that of DET, as
follows: all stops either fall in range [0, B] or [c,+∞), and
no stop falls in [B, c]. Thus, the third and fourth terms in
(39) become zero, and

E
y
[costonline(c, y)] = µB- + qB+(c+B) ≥ µB- + 2qB+B (40)

Now if any strategy P (x) has a probability with P (c) > 0,
we can construct another solution that add this probability
to P (B) with a smaller expected cost. Hence, it is safe to
assume that P (c) = 0 for any c > B.

B. FIRST MOMENT CONSTRAINT
In this appendix, we prove that the added information of

first moment of the stop length yield the same strategy as
N-Rand.

The proof would be conducted by slightly modifying the
Equation (7) in [13]. In order to minimize the expected on-
line cost, instead of the metrics evaluating the performance

of the online strategy, the denominator of the term C(p(x),y)
y

would be removed and the numerator C(p(x), y) represents
the online cost.

C(p(x), y) = λ1 + λ2y (41)
It should be noted that the C(p(x), y) is the same as our

definition of (19). By differentiating both sides of the Equa-
tion (41), we can get a first-order ODE as in (42), whose
generic solution is (43). the coefficient is calculated by con-

sidering the constraint
∫ B
0
p(x)dx = 1, and the solution is

updated as (44). This is the same as N-Rand defined in
(7).

d

dx
p(x) =

1

B
p(x) (42)

p(x) = C0e
x
B (43)

p(x) =
1

B(e− 1)
e

x
B (44)

Similary, we can prove that the second-moment yields the
same strategy as well.

C. CALCULATION OF BREAK-EVEN IN-
TERVAL B

In this appendix, we detail the calculation of the break-
even interval B for studying the tradeoff between idling and
restart. We use US dollar as the default concurrency in the
following calculation.

C.1 Idling Cost
Compared with restart, the cost of idling mainly comes

from the extra consumption of fuel. In engines of curren-
t generation, engine or spark plug wear/fouling caused by
engine idling are too small to be measurable [4].

The fuel cost during idling is dependent on the displace-
ment of the engine. A quantized expression can be summa-
rized as (45) [15], where fuelL/h is the total fuel (in liter)
consumed per hour, and D is the displacement of the engine.

fuelL/h = 0.3644×D + 0.5188 (45)
Argonne National Laboratory has taken a test on a 2011

Ford Fusion mid-sized sedan with a 2.5-L, 4-cylinder engine
(175 HP) and 6-speed automatic transmission. The mea-
sured idling cost fuelcc/s is about 0.279cc per second. If we
are interested in the monetary cost of idling costidling/s, it
depends on price of the fuel, as in (46). If the fuel price is
$3.5 per gallon, costidling/s is about 0.0258 cent/s.

costidling/s = fuelcc/s ×
pgallon
3785

(46)

C.2 Cost of restart
For convenience, we would take the cost of idling for 1

second (costidling/s) as the unit to normalize all the costs
associated with restart.

C.2.1 Fuel
In terms of fuel consumption, fuel incurred due to restart

is equivalent to the fuel cost during 10 seconds of idling. It
should be noted that this estimation was reported in sever-
al places: Chrysler Canada in 1981 and European work in
1985 [4]; NRCan’s Office of Energy Efficiency on three 1999
model year vehicles [4]; and Argonne National Laboratory’s
work [2]. Based on this estimation applicable to vehicles in
different decades, the fuel consumption of restart Bfuel,s/c
can be safely calculated as 10 seconds of idling.

C.2.2 Engine wear
Engine wear is the most important concern from drivers

who may refuse to stop engine or reluctantly follow the rules.
Overlooking of the engine wear from environment protection
organizations along with overconcern are common. In order
to convince those drivers and correct the overlooking from
environment organizations, a detailed inspection is neces-
sary. Generally, engine wear comes from the three main
parts of engine: internal combustion engine (ICE) itself, s-
tarter, and battery.

Bengine,s = Bmechanic,s +Bstarter,s +Bbattery,s

Bengine,c = Bmechanic,c +Bstarter,c +Bbattery,c
(47)

ICE Wear.
Despite the name “engine wear”, ICE itself is the most

durable among the three parts. In modern stop-start sys-
tems, ICE is modified, so that ignition is adjusted according
to position of valves in order to prevent further harm on
ICE. Even without SSS, there is no evidence that restarting
the engine causes significant wear to ICE, and we assume
that this is negligible compared to the other costs.

Starter Wear.
Compared with the mechanical parts, the starter is more

vulnerable. In stop-start systems, starter is strengthened



Table 1: Stops Per Day in 3 Locations

Location Vehicles Mean(µ) Std(σ) P{X ≤ µ+ 2σ}
Atlanta 827 10.37 8.42 0.9091
Chicago 408 12.49 9.97 0.9534
California 291 9.37 7.68 0.9553

in order to deal with more frequent stop/start operations,
while conventional vehicles may suffer from that. In the
following, we discuss these two cases separately.

In SSV, the starter is usually strengthened. It is reported
that SSS can allow a total of 1.2 million starts 3, typically
enough for a cars’ lifetime. Due to the durability of SSV’s
starter, we estimate Bstarter,s as 0.

For conventional vehicles, starter is much more vulnera-
ble. We use the amortized replacement cost of the starter
to estimate the cost per start. We refer to the relationship
between starts per day and the vehicle service life as report-
ed in [4]. The replacement cost of a starter ranges from
$55 to $400, depending on many factors, e.g. the length
of warranty, make, model and engine size. Also, the labor
cost of replacing the starter is significant, ranging from $115
to $225. An average cost per start coststarter,c can be cal-
culated by dividing the costs of replacement and labor by
durability of the starter (between 20,000 and 40,000 start-
s/replacement). coststarter,c is reported as 0.5 to 4 cents
per start [4]. If the idling cost costidling/s is 0.0258 cent/s,
Bstarter,c ranges from 19.38 to 155.04 seconds.

Battery.
The calculation of the restart cost associated to battery

is more difficult to calculate, because of the uncertainty on
the number of charging/discharging times (called cyclic en-
durance) during a battery’s lifetime. Cyclic endurance de-
pends on the depth of discharging and the pattern of charg-
ing/discharging cycles. For example, a battery with 1.75%
depth of discharge could serve for 13250 cycles before failure.
When the depth of discharge increases to 31%, the number
of cycles decreases to 250 [4].

Batteries for stop-start systems are usually improved in
order to meet this requirement. VARTA stop-start pro bat-
teries could provide 3 times higher levels of cyclic endurance
than conventional batteries, along with a very high deep
discharge capability 4.

To estimate the cost of battery per start, we use the amor-
tized battery cost by the possible number of stops during its
warranty. The most advanced stop-start battery basical-
ly needs about $230 (without labor cost) 5, with a warranty
usually 2-4 years. According to the driving data [5], the total
stops per day for three different areas (Atlanta, Chicago, and
California) are listed in Table 1. We consider µ+2σ = 32.43
as the estimated upper bound on the number of stops per
day, such that 95% of the vehicles will fall in this range.

In the end, costbattery,s/c is calculated between 0.4841 and
0.9713 cents, and Bbattery,s/c is at least 18.76 seconds. It
should be noted that this is possibly the most conservative
estimation for battery cost per start.

C.2.3 Exhaust Emissions
3http://www.cpowert.com/
4Varta Battery, http://www.varta-automotive.com/
5http://www.battery4cars.co.uk/

The emission of CO2 is proportional to the fuel consumed,
thus a restart emits roughly the same amount of CO2 as
idling for 10 seconds. Evaluation on the cost of emission
largely depends on legislation around the world. Carbon
dioxide tax is introduced in many countries now, although
with a relatively small amount. Similar to anti-idling rules,
carbon dioxide tax varies a lot among different locations.
The carbon tax is usually imposed for each ton of carbon
dioxides emitted. Many developed countries have taxed the
fuel directly for many years 6. This cost incurred by CO2

has already been included in the calculation of Bfuel,s/c.
Other emissions, including total hydrocarbons (THC), ni-

trogen oxides (NOx), and carbon monoxide (CO), are more
relevant with the scrubber technology. One objection to
anti-idling is that these exhaust gas emissions from restarts
is significantly larger than idling, due to the cooling of cat-
alysts. According to the measurement taken by Argonne
National Laboratory [2], restart would cause emission of 44
mg THC, 6 mg NOx, and 1253 mg CO, while for every sec-
ond of idling, emission of THC, NOx, and CO are 0.266 mg,
0.0097 mg, and 0.108 mg respectively.

However, the actions against these exhaust emissions have
limited impact on vehicles, possibly due to its significance
compared to other sources of polution. Take Sweden for
example, Nitrogen Oxidant would be charged by about 4.3
Euros per kilogram of NOx (or the total emission of 166,667
restarts) 7. Such a penalty is equal to $0.0035 cents per
restart, or the cost of an idling for 0.14 seconds.

6http://en.wikipedia.org/wiki/Carbon tax
7Swedish Environmental Protection Agency,
http://www.swedishepa.se/


